박찬욱 감독의 영화.. 이사람 영화 좀 탐독해야 한다. 감독의 에세이에서 특이한 사람이라는 것을 발견했기에. 다음 목표는 친절한금자씨, 복수는 나의것, 죽어도 좋아다.. 아직 많이 남았군. 올드보이에서 나오는 윤진서.. 내생에 가장 아름다운 일주일에서 처럼 연애신을 열연했군... 줴길... 왜이리 주길 좋아하는 거지?? 나나 만나주지... 최민식의 연기 재밌다. "나간다. 나간다. 한달 후면 나간다. 나간다 나간다....." 내가 군대에서 외쳤던 말을 똑같이 하더군... 난 젓가락으로 벽을 파진 않았지만, 뭔가를 준비했던 것 같다. 푸훗... 명대사 : 옆집 사람은 젓가락 한개로 밥을 먹겠군...(음 수정이 필요해) ->옆집 사람은 숟가락 두개로 밥을 먹겠군...(긍정적으로 수정하자..) 계란이든 바위든 물에 가라앉는다. ->계란은 썩으면 뜬다. 잔인한 영화이고, 볼거리를 제공하는데 그렇게 빠지는 않는 군.. 훌륭한 작품이다. * 박영식님에 의해서 게시물 복사되었습니다 (2007-06-09 01:29)"
[수학] x^2-2x가 역함수를 갖는 조건
[원문보기]
1대 1 대응이 되는 조건은 x가 1보다 크거나 같기만 하면 된다.
그런데, 정의역과 치역이 같다는 조건이 붙기 때문데, f(x)=x^2-2x에서 y를 x로 놓고,
x=x^2-2x로 하여 정리하면 x^2-3x=0 -> x(x-3)=0 이되어, x는 3이나, 0보다 커야 하는 조건을 얻는데,
전제어서 x>=이므로 3보다 커야된다는 결론은 얻을 수 있다. 그런데, 사실 이런 수식보다는 그래프적으로
y=x축의 최우측 교점의 값이 x=3을 통해 눈으로 확인하는게 더 낫다
아래는 모르는 사람의 답변이다.
http://todayhumor.dreamwiz.com/board/view.php?table=humorbest&no=250125&page=1&keyfield=&keyword=&sb=
사람들이 답변을 달았는데, 눈팅만 하는 오유 유저로서
잘못된 답변들이 푸르딩딩한 상태로 있는 것 같아서 제대로 된
답변을 올려드리고자 글을 씁니다.
위의 a가 3인 이유는 크게 두가지입니다.
첫째, A--->A라는 함수라는 사실로부터 f(a)>=a인 부등식이 성립해야 한다는 것입니다.
f(a)=a^2-2a이므로, a^2-2a>=a, 따라서 a^2-3a>=0 이어야 합니다. 이조건을
생각하면 a>=3 또는 a<=0 입니다.
둘째, f가 역함수를 갖는다는 사실로부터 f가 일대일함수라는 것을 알 수 있습니다.
f가 일대일함수라는 조건과 f(x)=(x-1)^2-1 이라는 식으로부터 A라는 집합은
{x|x>=1} 집합의 부분집합이라는 것을 알 수 있습니다.
두가지 조건을 종합하면, a>=3 이어야 하고, 이 경우 x=a일 때 최소값 f(a)를 갖습니다.
엄밀하게 말하면, 이 문제는 a가 3이상인 모든 수는 다 됩니다. 왜냐하면 함수를 말할 때
A-->A의 함수라는 말은 A가 공역이라는 뜻이지 치역이라는 뜻이 아니기 때문입니다. 만약
A가 치역이라면, 최소값이 a와 같아져야 하므로, a^2-2a=a에서, a=0 또는 a=3. 결국
모든 조건을 만족하는 답은 a=3이라는 결론에 도달합니다.
위에서 언급들 하신 허수와 자연수는 이 문제와 큰 관련은 없으며 핵심적인 아이디어는
제가 언급한 두가지 조건 때문입니다. 이상 수학과 대학원생의 대답이었습니다.
그런데, 정의역과 치역이 같다는 조건이 붙기 때문데, f(x)=x^2-2x에서 y를 x로 놓고,
x=x^2-2x로 하여 정리하면 x^2-3x=0 -> x(x-3)=0 이되어, x는 3이나, 0보다 커야 하는 조건을 얻는데,
전제어서 x>=이므로 3보다 커야된다는 결론은 얻을 수 있다. 그런데, 사실 이런 수식보다는 그래프적으로
y=x축의 최우측 교점의 값이 x=3을 통해 눈으로 확인하는게 더 낫다
아래는 모르는 사람의 답변이다.
http://todayhumor.dreamwiz.com/board/view.php?table=humorbest&no=250125&page=1&keyfield=&keyword=&sb=
사람들이 답변을 달았는데, 눈팅만 하는 오유 유저로서
잘못된 답변들이 푸르딩딩한 상태로 있는 것 같아서 제대로 된
답변을 올려드리고자 글을 씁니다.
위의 a가 3인 이유는 크게 두가지입니다.
첫째, A--->A라는 함수라는 사실로부터 f(a)>=a인 부등식이 성립해야 한다는 것입니다.
f(a)=a^2-2a이므로, a^2-2a>=a, 따라서 a^2-3a>=0 이어야 합니다. 이조건을
생각하면 a>=3 또는 a<=0 입니다.
둘째, f가 역함수를 갖는다는 사실로부터 f가 일대일함수라는 것을 알 수 있습니다.
f가 일대일함수라는 조건과 f(x)=(x-1)^2-1 이라는 식으로부터 A라는 집합은
{x|x>=1} 집합의 부분집합이라는 것을 알 수 있습니다.
두가지 조건을 종합하면, a>=3 이어야 하고, 이 경우 x=a일 때 최소값 f(a)를 갖습니다.
엄밀하게 말하면, 이 문제는 a가 3이상인 모든 수는 다 됩니다. 왜냐하면 함수를 말할 때
A-->A의 함수라는 말은 A가 공역이라는 뜻이지 치역이라는 뜻이 아니기 때문입니다. 만약
A가 치역이라면, 최소값이 a와 같아져야 하므로, a^2-2a=a에서, a=0 또는 a=3. 결국
모든 조건을 만족하는 답은 a=3이라는 결론에 도달합니다.
위에서 언급들 하신 허수와 자연수는 이 문제와 큰 관련은 없으며 핵심적인 아이디어는
제가 언급한 두가지 조건 때문입니다. 이상 수학과 대학원생의 대답이었습니다.
댓글 달기